Regularity of Hölder continuous solutions of the supercritical quasi-geostrophic equation
نویسندگان
چکیده
We present a regularity result for weak solutions of the 2D quasi-geostrophic equation with supercritical (α < 1/2) dissipation (−∆) : If a Leray-Hopf weak solution is Hölder continuous θ ∈ C(R) with δ > 1 − 2α on the time interval [t0, t], then it is actually a classical solution on (t0, t]. AMS (MOS) Numbers: 76D03, 35Q35
منابع مشابه
Regularity Criteria for the Dissipative Quasi-geostrophic Equations in Hölder Spaces
We study regularity criteria for weak solutions of the dissipative quasi-geostrophic equation (with dissipation (−∆)γ/2, 0 < γ ≤ 1). We show in this paper that if θ ∈ C((0, T ); C1−γ), or θ ∈ Lr((0, T ); Cα) with α = 1−γ+ γ r is a weak solution of the 2D quasi-geostrophic equation, then θ is a classical solution in (0, T ]× R2. This result improves our previous result in [18].
متن کاملHölder continuity of solutions of supercritical dissipative hydrodynamic transport equations
We examine the regularity of weak solutions of quasi-geostrophic (QG) type equations with supercritical (α < 1/2) dissipation (−∆). This study is motivated by a recent work of Caffarelli and Vasseur, in which they study the global regularity issue for the critical (α = 1/2) QG equation [2]. Their approach successively increases the regularity levels of Leray-Hopf weak solutions: from L to L∞, f...
متن کاملGlobal regularity for the supercritical dissipative quasi-geostrophic equation with large dispersive forcing
We consider the 2-dimensional quasi-geostrophic equation with supercritical dissipation and dispersive forcing in the whole space. When the dispersive amplitude parameter is large enough, we prove the global well-posedness of strong solution to the equation with large initial data. We also show the strong convergence result as the amplitude parameter goes to ∞. Both results rely on the Strichar...
متن کاملEventual regularization for the slightly supercritical quasi-geostrophic equation
We prove that weak solutions of a slightly supercritical quasi-geostrophic equation become smooth for large time. We prove it using a De Giorgi type argument using ideas from a recent paper by Caffarelli and Vasseur.
متن کاملSolutions of the 2D quasi-geostrophic equation in Hölder spaces
The 2D quasi-geostrophic equation t + u · ∇ + (− ) = 0, u=R⊥( ) is a two-dimensional model of the 3D hydrodynamics equations. When 1 2 , the issue of existence and uniqueness concerning this equation becomes difficult. It is shown here that this equation with either = 0 or > 0 and 0 1 2 has a unique local in time solution corresponding to any initial datum in the space Cr ∩ Lq for r > 1 and q >...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007